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6. LEAST SQUARES ADJUSTMENT OF OBSERVATIONS ONLY 

In Chapter 2 the least squares technique of adjustment of indirect observations was introduced 

using the example of fitting a straight line through a series of data points.  The "observations" 

in this example were the x,y coordinates that were indirect measurements of the unknown 

parameters m and c, the slope and intercept of the line on the y-axis respectively.  Subsequent 

examples of curve fitting (parabola and ellipse) demonstrated this technique and in Chapter 4 

adjustment of indirect observations was applied to a level network.  An alternative to this 

technique, known as least squares adjustment of observations only, will be introduced in this 

chapter using the level network example of Chapter 4. 

 

6.1. Adjustment of a Level Network using Least Squares Adjustment of 
Observations Only 

Figure 6.1 shows a diagram of a level network of height differences observed between the 

fixed stations A (RL 102.440 m) and B (RL 104.565 m) and "floating" stations X, Y and Z 

whose Reduced Levels (RL's) are unknown.  The arrows on the diagram indicate the direction 

of rise.  The Table of Height differences shows the height difference for each line of the 

network and the distance (in kilometers) of each level run.  The height differences can be 

considered as independent (uncorrelated) and of unequal precision, where the weights of the 

height differences are defined as being inversely proportional to the distances in kilometres 

(see Chapter 3, Section 3.5.2) 
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Line Height Diff Dist (km) 
1 6.345 1.7 
2 4.235 2.5 
3 3.060 1.0 
4 0.920 3.8 
5 3.895 1.7 
6 2.410 1.2 
7 4.820 1.5 

 
 

 

Figure 6.1  Level network 
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The measured height differences do not accord with the simple principle that they should sum 

to zero around a "closed loop", i.e., there are misclosures.  For example: 

 in the loop AXYA  1 6 5 0.040 mH H HΔ − Δ − Δ = +

 in the loop XBZYX  2 3 7 6 0.065 mH H H H−Δ − Δ + Δ + Δ = −

 in the loop AYZA  5 7 4 0.005 mH H HΔ − Δ + Δ = −

Hence it is required to determine the adjusted height differences (that will sum to zero) and 

the RL's of X, Y and Z. 

 

There are  observations (the measured height differences) and a minimum of  

observations are required to fix the RL's of X, Y and Z.  Hence there are  

redundant measurements, which 

7n = 0 3n =

0 4r n n= − =

equals the number of independent condition equations. 

Denoting the observed height differences as , residuals as  and the RL's of 

A and B as A and B, these condition equations are 

1 2,   etcl l 1 2,   etcv v

 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1 1 6 6 5 5

2 2 3 3 7 7 6 6

5 5 7 7 4 4

1 1 2 2

0

0

0

l v l v l v

l v l v l v l v

l v l v l v

l v l v B A

+ − + − + =

− + − + + + + + =

+ − + + + =

+ − + = −

 (6.1) 

The first 3 equations of (6.1) are the loop closure conditions and the last equation is a 

condition linking the RL's of A and B. 

 

Since the measurements are of unequal precision, there is an associated weight  with each 

observation and the application of the least squares principle calls for the minimization of the 

least squares function 

kw

ϕ  as 

  (6.2) 2

1

 the sum of the weighted squared residuals
n

k k
k

w vϕ
=

= = ∑

or   2 2 2
1 1 2 2 3 3 7 7w v w v w v w vϕ = + + + +" 2

Considering equation (6.1) it is clear that separate expressions for residuals cannot be derived 

and substituted into ϕ , as was possible in the technique for adjustment of indirect 

observations (see Chapter 2).  Therefore another approach is needed to ensure that ϕ  is a 
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minimum as well as satisfying equations (6.1).  This is accomplished by using a method of 

function minimization developed by Lagrange1 and set out in the following manner. 

 

 (i) Gather the terms in equations (6.1) together 

 

( )
( )
( )

( ) ( )

1 6 5 1 6 5

2 3 7 6 2 3 7 6

5 7 4 5 7 4

1 2 1 2

0

0

0

v v v l l l f

v v v v l l l l f

v v v l l l f

v v B A l l f

− − = − − − =

− − + + = − − − + + =

− + = − − + =

1

2

3

4− = − − − =

 (6.3) 

 

 (ii) Rewrite equations (6.3) in normal form (zero on the right-hand-side) 

 

1 6 5 1

2 3 7 6 2

5 7 4 3

1 2 4

0
0
0
0

v v v f
v v v v f

v v v f
v v f

− − − =
− − + + − =

− + − =
− − =

 (6.4) 

 (iii) Now form an augmented function ϕ′  of the form 

  (6.5) ( ) (
( ) ( )

2 2 2 2
1 1 2 2 3 3 7 7

1 1 6 5 1 2 2 3 7 6 2

3 5 7 4 3 4 1 2 4

2 2

2 2

w v w v w v w v
k v v v f k v v v v f

k v v v f k v v f

ϕ′ = + + + +

− − − − − − − + + −

− − + − − − −

"
)

4 where  are Lagrange multipliers and there are as many multipliers 

as there are conditions.  The introduction of 

1 2 3,  ,   and k k k k

2−  preceding each multiplier is for 

convenience only.  Inspection of equations (6.5), (6.4) and (6.2) show that ϕ  and 

ϕ′  are equal since the additional terms in ϕ′  equate to zero. 

 

 (iv) The unknowns in equation (6.5) are the residuals  and the Lagrange 

multipliers , and so for 

1 2, , ,v v v… 7

1 2 3 4,  ,   and k k k k ϕ′  to be a minimum, the partial 

derivatives of ϕ′  with respect to each of the unknowns must be zero.  Setting the 

                                                 
1  Joseph Louis LAGRANGE (1713-1813), a great French mathematician whose major work was in the calculus of variation, 
celestial and general mechanics, differential equations and algebra.  Lagrange spent 20 years of his life in Prussia and then 
returned to Paris where his masterpiece, Mécanique analytique, published in 1788, formalized much of Newton's work on 
calculus. 
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partial derivatives of ϕ′  with respect to the residuals leads to the following 

equations 

 

( )

( )

( )

( )

( )

1 1 1 4 1 1 4
1 1

2 2 2 4 2 2 4
2 2

3 3 2 3 2
3 3

4 4 3 4 3
4 4

5 5 1 3 5 1 3
5 5

6 6 1 2 6 1 2
6 6

12 2 2 0 or

12 2 2 0 or

12 2 0 or

12 2 0 or

12 2 2 0 or

12 2 2 0 or

w v k k v k k
v w

w v k k v k k
v w

w v k v k
v w

w v k v k
v w

w v k k v k k
v w

w v k k v k k
v w

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

′∂
= − − = = +

∂
′∂
= + + = = − −

∂
′∂
= + = = −

∂
′∂
= − = =

∂
′∂
= + − = = − +

∂
′∂
= + − = = − +

∂

(7 7 2 3 7 2 3
7 7

12 2 2 0 orw v k k v k k
v w
ϕ′∂

= − + = = −
∂

)  (6.6) 

 and when ϕ′  is differentiated with respect to the Lagrange multipliers and equated 

to zero 

 

( )

( )

( )

( )

1 6 5 1 1 6 5
1

2 3 7 6 2 2 3 7 6
2

5 7 4 3 5 7 4
3

1 2 4 1 2
4

2 0 or

2 0 or

2 0 or

2 0 or

v v v f v v v f
k

v v v v f v v v v f
k

v v v f v v v f
k

v v f v v f
k

1

2

3

4

ϕ

ϕ

ϕ

ϕ

′∂
= − − − − = − − =

∂
′∂
= − − − + + − = − − + + =

∂
′∂
= − − + − = − + =

∂
′∂
= − − − = − =

∂
 (6.7) 

  the original condition equations (6.4) result.  This demonstrates that the 

introduction of Lagrange multipliers ensures that the conditions will be satisfied 

when ϕ′  is minimized. 

 

 (v) Now, substituting equations (6.6) into (6.7) gives four normal equations 
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1 2 3 4
1 6 5 6 5 1

1 2 3
6 2 3 6 7 7 2

1 2 3
5 7 4 5 7

1 2 4
1 2 1 2

1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1

k k k k
w w w w w w

k k k
w w w w w w w

k k k
w w w w w

k k k
w w w w

⎛ ⎞
+ + − − + =⎜ ⎟

⎝ ⎠
⎛ ⎞

1

4 2

3

4

f

k f

f

f

− + + + + − + =⎜ ⎟
⎝ ⎠

⎛ ⎞
− − + + + =⎜ ⎟

⎝ ⎠
⎛ ⎞

+ + + =⎜ ⎟
⎝ ⎠

 (6.8) 

  Equations (6.8) can be solved to give the Lagrange multipliers , 

which can be substituted back into equations 

1 2 3,  ,   and k k k k4

(6.6) to give the residuals 

.  Note that the coefficient terms 1 2 7, , ,v v v… 1

kw
 in equations (6.8) are known as 

weight reciprocals and in the case of levelling are simply the distances of the level 

runs in kilometres. 

 

Using the data from Figure 6.1 the weight reciprocals are the distances (in kilometres) 

 { }1 1.7 2.5 1 3.8 1.7 1.2 1.5
kw
=  

the numeric terms f are given by equations (6.3) 

 

( )
( )

( )
( ) ( )

1 1 6 5

2 2 3 7 6

3 5 7 4

4 1 2

0.040 m

0.065 m

0.005 m

0.015 m

f l l l

f l l l l

f l l l

f B A l l

= − − − = −

= − − − + + =

= − − + =

= − − − =

 

and the normal equations (in matrix form) are 

  (6.9) 

1

2

3

4

4.6 1.2 1.7 1.7 0.040
1.2 6.2 1.5 2.5 0.065
1.7 1.5 7.0 0 0.005
1.7 2.5 0 4.2 0.015

k
k
k
k

− − −⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥− − ⎢ ⎥⎢ ⎥ =

− − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

The solution of equations (6.9) for the Lagrange multipliers gives 

  1 2 3 40.005700, 0.009671, 0.001402, 0.000122k k k k= − = = =
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Substituting these values ( ) together with the weight reciprocals 1 2 3,  ,   and k k k k4
1

kw
 into 

equations (6.6) gives the residuals .  The height differences, residuals and the 

adjusted height differences (observed value + residual) of the level network are shown below. 

1 2, , ,v v v… 7

 

Line Observed HΔ  Residual v Adjusted HΔ  

1 6.345 -0.0095 6.336 

2 4.235 -0.0245 4.211 

3 3.060 -0.0097 3.050 

4 0.920 0.0053 0.925 

5 3.895 0.0121 3.907 

6 2.410 0.0184 2.428 

7 4.820 0.0124 4.832 

 

These are identical results to those obtained by least squares adjustment of indirect 

observations set out in Chapter 4. 

 

6.2. Some Comments on the Two Applications of the Method of Least Squares 

 

1. The method of least squares has been applied in two examples: 

 

 (a) determining the parameters of a "line of best fit" through a number of data points 

(see Chapter 2) and 

 

 (b) determining the adjusted height differences in a level network. 

 

2. Consider the first example:  the line of best fit. 

 

• A mathematical model (equation) was established linking observations, residuals 

(corrections) and unknown parameters. 
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• For n observations, there is a minimum number n  required to determine the u 

unknown parameters.  In this case  n

0

u0 =   and the number of redundant 

observations is  r n n= − 0  

• An equation was written for each observation, i.e., there were n observation 

equations.  The observation equations were recast as residual equations. 

• Since there were n equations in u unknowns (  there is no unique solution and 

the least squares principle was used to determine the u 

)n u〉

normal equations from 

which the best estimates of the u unknown parameters were calculated. 

 

This technique of least squares "adjustment" is known by various names, some of which are 

 

 parametric least squares, 

 least squares adjustment by observation equations, 

 least squares adjustment by residual equations, and 

 least squares adjustment of indirect observations. 

 

The last of these is perhaps the most explicit since each observation is in fact an indirect 

measurement of the unknown parameters.  Least squares adjustment of indirect 

observations is the name adopted for this technique by Mikhail (1976) and Mikhail & 

Gracie (1981) and will be used in these notes. 

 

3. Consider the second example:  the level network. 

 

• A relationship or condition that the observations (and residuals) must satisfy was 

established.  In this case, the condition to be satisfied was that observed height 

differences (plus some unknown corrections or residuals) should sum to zero 

around a closed level loop. 

• The minimum number of observations n  required to fix the heights of X, Y and Z 

and satisfy the condition between the fixed points A and B was determined giving 

the number of 

0

independent condition equations equal to the number of redundant 

observations  r n n= − 0 . 

• There were r equations in n unknown residuals, and since r n n= − 0  was less than 

n, there was no unique solution for the residuals.  The least squares principle was 
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used to determine a set of r normal equations, which were solved for r Lagrange 

multipliers which in turn, were used to obtain the n residuals. 

• The residuals were added to the observations to obtain the adjusted observations 

which were then used to determine the heights of points X, Y and Z. 

 

This technique of least squares "adjustment" is known by various names, two of which are 

 

 least squares adjustment by condition equations, and 

 least squares adjustment of observations only. 

 

The second of these is the more explicit since equations involve only observations.  No 

parameters are used.  Least squares adjustment of observations only is the name adopted for 

this technique by Mikhail (1976) and Mikhail & Gracie (1981) and will be used in these 

notes. 

 

It should be noted that in practice, the method of adjustment of observations only is seldom 

employed, owing to the difficulty of determining the independent condition equations 

required as a starting point.  This contrasts with the relative ease of the technique of 

adjustment of indirect observations, where every observation yields an equation of fixed form.  

Computer solutions of least squares problems almost invariably use the technique of 

adjustment of indirect observations. 

 

6.2.1. A Note on Independent Condition Equations. 
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Consider the level network shown in Figure 6.2.  The 

RL of A is known and the RL's of B, C and D are to 

be determined from the observed height differences.  

The arrows on the diagram indicate the direction of 

rise.   

 

 Figure 6.2  Level network 

© 2005, R.E. Deakin Notes on Least Squares (2005) 6–8 



RMIT University Geospatial Science 

 

There are n  observations with a minimum of n= 6 0 3=  required to fix the RL's of B, C and 

D with respect to A.  Hence there are r n n= − =0 3 redundant measurements, which equal 

the number of independent condition equations.  Omitting the residuals, these equations are 

 
l l l
l l l
l l l

1 3 2

4 5 3

1 4 6

0
0
0

+ − =

− − =

+ − =

 (6.10) 

Alternatively, here is another set of independent condition equations 

 
l l l l

l l l
l l l l

1 3 5 6

1 4 6

1 4 5 2

0
0
0

+ + − =

+ − =

+ − − =

 (6.11) 

But, here is a further set of condition equations, which are not independent 

 
l l l
l l l

l l l l

1 3 2

4 5 3

1 4 5 2

0
0
0

+ − =

− − =

+ − − =

 (6.12) 

where the third equation of (6.12) is obtained by adding the first two. 

 

Care needs to be taken in determining independent equations and it is easy to see that this 

could become quite difficult as the complexity of the adjustment problem increases. 

 

6.3. Matrix Methods and Least Squares Adjustment of Observations Only 

Matrix methods may be used to develop standard equations and solutions for this technique of 

least squares adjustment. 

 

Consider again the example of the level net shown in Figure 6.1.  The independent condition 

equations, (reflecting the fact that height differences around closed level loops should sum to 

zero and the condition between the known RL's of A and B), are 

 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1 1 6 6 5 5

2 2 3 3 7 7 6 6

5 5 7 7 4 4

1 1 2 2

0

0

0

l v l v l v

l v l v l v l v

l v l v l v

l v l v B A

+ − + − + =

− + − + + + + + =

+ − + + + =

+ − + = −

 (6.13) 

© 2005, R.E. Deakin Notes on Least Squares (2005) 6–9 



RMIT University Geospatial Science 

 

These equations could be expressed in matrix form as 

 

1 1

2 2

3 3

4 4

5 5

6 6

7 7

1 0 0 0 1 1 0 0
0 1 1 0 0 1 1 0
0 0 0 1 1 0 1 0
1 1 0 0 0 0 0

l v
l v
l v
l v
l v

B A
l v
l v

+⎡ ⎤
⎢ ⎥+⎢ ⎥− −⎡ ⎤ ⎡

+⎢ ⎥
⎤

⎢ ⎥ ⎢− − ⎢ ⎥
⎥

⎢ ⎥ ⎢+ =⎢ ⎥−
⎥

⎢ ⎥ ⎢
⎢ ⎥+

⎥
⎢ ⎥ ⎢− −⎢ ⎥

⎥
⎣ ⎦ ⎣+⎢ ⎥

⎢ ⎥+⎣ ⎦

⎦

 (6.14) 

or A l A v d+ =  (6.15) 

which can be written as 

 A v f=  (6.16) 

where f d A l= −  (6.17) 

and 

 n is the number of measurements or observations, 

  is the minimum number of observations required, n0

 r n n= − 0  is the number of redundant observations (equal to the number of  

  condition equations, 

 v is an (n,1) vector of residuals, 

 l is the (n,1) vector of observations, 

 A is an (r,n) matrix of coefficients, 

 f is an (r,1) vector of numeric terms derived from the observations, 

 d is an (r,1) vector of constants.  Note that in many least squares 

  problems the vector d is zero. 

 

Now if each observation has an a priori estimate of its variance then the (n,n) weight matrix 

of the observations W is known and the least squares function ϕ  is 

  2

1

 the sum of the weighted squared residuals
n

k k
k

w vϕ
=

= = ∑

In matrix form, the least squares function is expressed as 

  (6.18) Tϕ = v Wv
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Now ϕ  is the function to be minimised but with the constraints imposed by the condition 

equations (6.16).  This is achieved by adding an (r,1) vector of Lagrange multipliers k and 

forming a new function ϕ′ . 

 2 ( )T Tϕ′ = −v Wv k Av f−  (6.19) 

Note that the second term of (6.19) equals zero, since A v f 0− = . 

 

Minimising ϕ′  is achieved by differentiating with respect to the unknowns, v and k and 

equating these differentials to zero 

 2 2T T T T∂ϕ
∂

′
= − + =v A f 0

k
 (6.20) 

 2 2T T T∂ϕ
∂

′
= − =v W k A 0

v
 (6.21) 

Dividing by two, re-arranging and transposing equations (6.20) and (6.21) gives 

 A v f=  (6.22) 

 T− =Wv A k 0  (6.23) 

Note that equations (6.22) are the original condition equations and also that W  due to 

symmetry. 

W= T

 

From (6.23), the (n,1) vector of residuals v is 

  (6.24) 1 T−= =v W A k QA kT

which, when substituted into (6.22), gives 

 ( ) ( )T T= =A QA k AQA k f  (6.25) 

The matrix  is symmetric and of order (r,r) and equations TAQA (6.25) are often termed the 

normal equations.  The solution of the (r,1) vector of Lagrange multipliers k is 

 ( ) 1T −
=k AQA f  (6.26) 

Now the term  in equations TAQA (6.25) and (6.26) can be "simplified" if an equivalent set of 

observations l  is considered, i.e., e
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 l Ae l=  (6.27) 

Applying the general law of propagation of variances (cofactors) to (6.27) gives 

  (6.28) T
e ll= =Q AQ A AQAT

and ( ) 11 T
e e

−−= =W Q AQA  (6.29) 

Substituting (6.29) into (6.26) gives another expression for k 

  (6.30) 1
e
−= =k Q f W fe

v

After computing k from either (6.26) or (6.30) the residuals v are computed from (6.24) and 

the vector of adjusted observations �l  is given by 

  (6.31) �l l= +

This is the standard matrix solution for least squares adjustment of observations only. 

 

6.4. Propagation of Variances for Least Squares Adjustment of Observations 
Only 

In this technique of least squares adjustment, the condition equations in matrix form are 

 A v f=  (6.32) 

with f d A l= −  (6.33) 

Similarly to Chapter 5, equation (6.33) can be expressed in a form similar to equation (3.23) 

and the general law of propagation of variances applied to give the cofactor matrix of the 

numeric terms f. 

 f A l d= − +  

and ( ) ( )T T
f f = − − = =Q A Q A AQA eQ  (6.34) 

Thus the cofactor matrix of f is also the cofactor matrix of an equivalent set of observations. 

 

The solution "steps" in the least squares adjustment of observations only are set out above and 

restated as 
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Q A Q A

W Q
k W f

v Q A

l l v

e
T

e e

e

T k

=

=

=

=

= +

−1

�

 

Applying the law of propagation of variances (remembering that cofactor and weight matrices 

are symmetric) gives the following cofactor matrices 

  (6.35) ( ) ( )T
kk e f f e e=Q W Q W W=

  (6.36) ( ) ( )T T T T
vv k k e= =Q QA Q QA QA W AQ

and 

  

( )

ˆ
T

T
e

T
e

= +

= +

= +

= + −

l l v
l QA k
l QA W f

l QA W d Al

from which follows 

 ( )ˆ T
e= − +l I QA W A l QA W dT

e  (6.37) 

Applying the law of propagation of variances to (6.37) gives 

 ( ) ( )ˆ ˆ
TT T

e el l
= − −Q I QA W A Q I QA W A  

which reduces to 

  (6.38) ˆ ˆ
T

el l
= − = −Q Q QA W AQ Q Qvv

Variance-covariance matrices for k, v and �l  are obtained by multiplying the cofactor matrix 

by the variance factor σ 0
2   - see equation (2.32). 

 

The a priori estimate of the variance factor may be computed from 

 �σ 0
2 =

v WvT

r
 (6.39) 

where 
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  is the quadratic form, and v WvT

 r is the degrees of freedom. 

 

A derivation of equation (6.39) is given in Chapter 5.  The quadratic form v W  may be 

computed in the following manner. 

vT

 

Remembering, for the method of observations only, the following matrix equations 

  
1

T
e

e e

e
T

−

=

=
=

=

Q AQA

W Q
k W f

v QA k

then 

 

( ) ( )

1

1

TT T

T T

T T

T
e

T
e

T
e e

−

−

=

=

=

=

=

=

v Wv QA k W QA k

k AQWQA k
k AQA k
k Q k

k W k

f W W k

T

T

 

and 

  (6.40) T =v Wv f k
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6.5. Adjustment of a Single Closed Traverse using the method of Least 
Squares Adjustment of Observations Only 

The basic component of many surveys is a traverse whose bearings have been determined by 

theodolite or total station observations and distances measured by EDM.  If careful 

observations are made with well maintained equipment, the measurements are usually free of 

systematic errors and mistakes and the surveyor is left with small random errors which, in the 

case of a closed traverse, reveal themselves as angular and linear misclosures.  If the 

misclosures are within acceptable limits, it is standard practice to remove the misclosures by 

adjusting the original observations to make the traverse a mathematically correct figure.  In 

this section, only single closed traverses are considered and such traverses may begin and end 

at different fixed points or close back on the starting point.  Traverse networks, consisting of 

two or more single traverses with common junction points, are not considered here; such 

networks are usually adjusted by a method commonly known as Variation of Coordinates, 

based on Least Squares Adjustment of Indirect Observations. 

 

6.5.1. Some single traverse adjustment methods and their deficiencies 

 

A traverse adjustment method should be based on sound mathematical principles related to 

the measurement techniques with due allowance made for independence (or dependence) of 

those measurements and also allow for differing measurement precisions. 

 

Bowditch's Rule and the Transit Rule, both of which adjust lengths and bearings of traverse 

lines and Crandall's method, which adjusts the lengths only of the traverse lines, are three 

popular adjustment methods that fail to meet the general guidelines above.  Although 

Crandall's method, which is explained in detail in later sections, does have mathematical 

rigour if it assumed that the bearings of a traverse close and require no further adjustment. 

 

Bowditch's Rule and the Transit Rule for adjusting single traverses are explained below by 

applying the rules to adjust a four-sided polygon having an unusually large misclose.  The 

polygon, shown in Figure 6.3, does not reflect the usual misclosures associated with traverses 

using modern surveying equipment. 
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Bowditch's Rule 

Nathaniel Bowditch (1773-1838) was an American mathematician and astronomer (see 

citation below).  In 1808, in response to a prize offered by a correspondent in The Analyst2, 

Bowditch put forward a method of adjusting the misclose in a chain and compass survey 

(bearings measured by magnetic compass and distances measured by surveyor's chain).  His 

method of adjustment was simple and became widely used.  It is still used today for the 

adjustment of a figure prior to the computation of the area, where the area-formula assumes a 

closed mathematical figure. 

 

Prior to the advent of programmable calculators and computers, Bowditch's Rule was often 

used to adjust traverses that did not close due to the effects of random errors in the 

measurement of bearings and distances.  Its use was justified entirely by its simplicity and 

whilst it had theoretical rigour – if the bearings of traverse lines were independent of each 

other, as they are in compass surveys – it is incompatible with modern traversing techniques.  

Bowditch's rule cannot take into account different measurement precisions of individual 

traverse lines nor can it accommodate complicated networks of connecting traverses.  

Nevertheless, due to its long history of use in the surveying profession, its simplicity and its 

practical use in the computation of areas of figures that misclose, Bowditch's Rule is still 

prominent in surveying textbooks and is a useful adjustment technique. 
Bowditch, Nathaniel (b. March 26, 1773, Salem, Mass., U.S. – d. March 16, 1838, Boston, Mass., U.S.), self-
educated American mathematician and astronomer, author of the best book on navigation of his time, and 
discoverer of the Bowditch curves, which have important applications in astronomy and physics.  Between 
1795 and 1799 Bowditch made four lengthy sea voyages, and in 1802 he was put in command of a merchant 
vessel.  Throughout that period he pursued his interest in mathematics.  After investigating the accuracy of The 
Practical Navigator, a work by the Englishman J.H. Moore, he produced a revised edition in 1799.  His 
additions became so numerous that in 1802 he published The New American Practical Navigator, based on 
Moore's book, which was adopted by the U.S. Department of the Navy and went through some 60 editions.  
Bowditch also wrote many scientific papers, one of which, on the motion of a pendulum swinging 
simultaneously about two axes at right angles, described the so-called Bowditch curves (better known as the 
Lissajous figures, after the man who later studied them in detail).  Bowditch translated from the French and 
updated the first four volumes of Pierre-Simon Laplace's monumental work on the gravitation of heavenly 
bodies, Traité de mécanique céleste, more than doubling its size with his own commentaries.  The resulting 
work, Celestial Mechanics, was published in four volumes in 1829-39.  Bowditch refused professorships at 
several universities.  He was president (1804-23) of the Essex Fire and Marine Insurance Company of Salem 
and worked as an actuary (1823-38) for the Massachusetts Hospital Life Insurance Company of Boston.  From 
1829 until his death, he was president of the American Academy of Arts and Sciences.  Copyright 1994-1999 
Encyclopædia Britannica 
 

                                                 
2 The Analyst or Mathematical Museum was a journal of theoretical and applied mathematics.  In Vol. I, No. II, 
1808, Robert Patterson of Philadelphia posed a question on the adjustment of a traverse and offered a prize of 
$10 for a solution; the editor Dr Adrian appointed as the judge of submissions.  Bowditch's solution was 
published in Vol. I, No. IV, 1808, pp. 88-93 (Stoughton, H.W., 1974.  'The first method to adjust a traverse 
based on statistical considerations', Surveying and Mapping, June 1974, pp. 145-49). 
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Bowditch's adjustment can best be explained by considering the case of plotting a figure 

(using a protractor and scale ruler) given the bearing and distances of the sides. 

 

Consider Figure 6.3, a plot that does not close, of a four-sided figure ABCD.  The solid lines 

AB, BC, CD and DE are the result of marking point A, plotting the bearing AB and then 

scaling the distance AB to fix B.  Then, from point B, plotting the bearing and distance BC to 

fix C, then from C, plotting the bearing and distance CD to fix D and finally from D, plotting 

the bearing and distance DA.  However, due to plotting errors, the final line does not meet the 

starting point, but instead finishes at E.  The distance EA is the linear misclose d, due to 

plotting errors, i.e., errors in protracting bearings and scaling distances.   

 

misclose
A

B

C

D

E

A B C D E

B'
C' D' A'

d

L

B'

C'

D'

d

x

x'

 
 

 

Figure 6.3  Graphical plot of polygon ABCD with misclose d 
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To adjust the figure ABCDE to remove the misclose d the following procedure can be used. 

 

1. Draw lines parallel to the line xx' (the misclose bearing) through points B, C and D. 

2. Draw a right-angled triangle AEA'.  The base of the triangle is L, equal to the sum of the 

lengths of the sides and the height is the linear misclose d. 

3. Along the base of the triangle, mark in proportion to the total length L, the distances AB, 

BC and CD.  These will be the points B, C and D. 

4. Draw vertical lines from B, C and D intersecting the hypotenuse of the triangle at B', C' 

and D'.  These distances are then marked off along the parallel lines of the main figure. 

5. The adjusted figure is AB'C'D'A. 

 

This adjustment is a graphical demonstration of Bowditch's Rule; i.e., the linear misclose d is 

apportioned to individual sides in the ratio of the length of the side to the total length of all the 

sides in the direction of the misclose bearing. 

 

Bowditch's Rule as it is normally applied to the adjustment of traverses can be deduced by 

again considering Figure 6.3.  The linear misclose d has easting and northing components 

 and , the subscript m referring to the misclose.  The distances BB', CC' and DD' 

each have easting and northing components, say  and 

mEΔ mNΔ

, , ,B B CdE dN dE dNC ,D DdE dN , the 

east misclose  and the north misclose m B CdE dE dE dE= + + D Dm B CdN dN dN dN= + + . 

 

Thus, we may express Bowditch's Rule for calculating adjustments  to individual 

easting and northing components  of line k of a traverse whose total length is L as 

,kdE dNk

k,kE NΔ Δ

 

m
k k

m
k k

dEdE dist
L

dNdN dist
L

⎛ ⎞= ⎜ ⎟
⎝
⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎠  (6.41) 

As an example of a Bowditch adjustment, Table 6.1 shows the bearings and distances of the 

polygon in Figure 6.3.   

The linear misclose, which is quite large, is ( ) ( )2 23.173 8.181 8.775d = − + − =  and the 

length L, equal to the sum of the four sides, is 51.53 53.86 36.31 54.71 196.41L = + + + =  
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The corrections to the easting and northing components of the line CD are 

 

3.17336.31 0.587
196.41
8.18136.31 1.512

196.41

dE

dN

= × =

= × =
 

Note: (i) Easting and northing misclosures  and  used in equations mdE mdN (6.41) have 

opposite signs to the misclosures in the tabulation, 

 (ii) The sums of the corrections are equal and of opposite sign to the misclosures 

and 

 (iii) The sums of the adjusted easting and northing components are zero. 

 
   

components corrections adjusted 
components 

Line Bearing Dist EΔ  NΔ  dN dN EΔ  NΔ  
AB 52º 31' 51.53 40.891 31.358 0.832 2.146 41.723 33.504 
BC 152º 21' 53.86 24.995 -47.709 0.870 2.243 25.865 -45.466 
CD 225º 30' 36.31 -25.898 -25.450 0.587 1.512 -25.311 -23.938 
DA 307º 55' 54.71 -43.161 33.620 0.884 2.280 -42.277 35.900 

  misclose -3.173 -8.181 3.173 8.181 0.000 0.000 
 

Table 6.1.  Bowditch Rule adjustment of polygon ABCD 

 

 

Transit Rule 

The Transit Rule has no theoretical basis related to surveying instruments or measuring 

techniques.  Its only justification is its mathematical simplicity, which is no longer a valid 

argument for the method in this day of pocket computers.  The Transit Rule for calculating 

adjustments  to individual easting and northing components ,kdE dNk k,kE NΔ Δ  of line k of a 

traverse whose east and north misclosures are  and  is mdE mdN

 

1 1

m
k k k kn

j j
j j

dE dNdE E dN N
E N

= =

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎜ ⎟ ⎜= Δ = Δ
⎜ ⎟ ⎜Δ Δ⎜ ⎟ ⎜
⎝ ⎠ ⎝
∑ ∑

m
n

⎞
⎟
⎟
⎟
⎟
⎠

 (6.42) 
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kEΔ  is the absolute value of the east component of the kth traverse leg and 
1

n

j
j

E
=

Δ∑  is the 

sum of the absolute values of the east components of the traverse legs and similarly for kNΔ  

and 
1

n

j
j

N
=

Δ∑ . 

 

As an example of a Transit Rule adjustment, Table 6.2 shows the bearings and distances of 

the polygon in Figure 6.3.  The east and north misclosures are 3.173mdE =  and , 

and the sums of the absolute values of the east and north components of the traverse legs are 

8.181mdN =

1

134.945
n

j
j

E
=

Δ =∑  and 
1

138.137
n

j
j

N
=

Δ =∑   

 

The corrections to the easting and northing components of the line CD are 

 

3.17325.898 0.587
134.945

8.18125.450 1.512
138.137

dE

dN

= × =

= × =
 

Note: (i) Easting and northing misclosures  and  used in equations mdE mdN (6.42) have 

opposite signs to the misclosures in the tabulation, 

 (ii) The sums of the corrections are equal and of opposite sign to the misclosures 

and 

 (iii) The sums of the adjusted easting and northing components are zero. 

 
   

components corrections adjusted 
components 

Line Bearing Dist EΔ  NΔ  dN dN EΔ  NΔ  
AB 52º 31' 51.53 40.891 31.358 0.961 1.857 41.852 33.215 
BC 152º 21' 53.86 24.995 -47.709 0.588 2.826 25.583 -44.883 
CD 225º 30' 36.31 -25.898 -25.450 0.609 1.507 -25.289 -23.943 
DA 307º 55' 54.71 -43.161 33.620 1.015 1.991 -42.146 35.611 

  misclose -3.173 -8.181 3.173 8.181 0.000 0.000 
 

Table 6.2  Transit Rule adjustment of polygon ABCD 
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6.5.2. Crandall's method.  A semi-rigorous single traverse adjustment method 

 

Suppose that the angles of a traverse – either beginning and ending at the same point or 

between two known points with starting and closing known bearings – have been adjusted so 

that the traverse has a perfect angular closure and the resulting bearings are considered as 

correct, or adjusted.  We call this a closed traverse.  A mathematical closure, using the 

adjusted bearings and measured distances, will in all probability, reveal a linear misclose, i.e., 

the sums of the east and north components of the traverse legs will differ from zero (in the 

case of a traverse beginning and ending at the same point) or certain known values (in the 

case of a traverse between known points).  Crandall's method, which employs the least 

squares principle, can be used to compute corrections to the measured distances to make the 

traverse close mathematically.  The method was first set out in the textbook Geodesy and 

Least Squares by Charles L. Crandall, Professor of Railroad Engineering and Geodesy, 

Cornell University, Ithaca, New York, U.S.A. and published by John Wiley & Sons, New 

York, 1906. 
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φ

φ
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3
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ΔE ΔE
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Figure 6.4  Schematic traverse diagram 

 

Figure 6.4 shows a schematic diagram of a traverse of 1, 2, ,k n= …  legs where ,k ksφ  are the 

adjusted bearing and measured distance respectively of the kth leg.  The east and north 
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components of each traverse leg are sink kE s kφΔ =  and cosk kN s kφΔ =  respectively.  If the 

adjusted distance of the kth traverse leg is ( )k ks v+  where  is the residual (a small unknown 

correction) then the two conditions that must be fulfilled by the adjusted bearings and 

adjusted distances in a closed traverse are 

kv

 
( ) ( ) ( )
( ) ( ) ( )

1 1 1 2 2 2

1 1 1 2 2 2

sin sin sin

cos cos cos
n n n E

n n n

s v s v s v D

s v s v s v D

φ φ φ

φ φ

+ + + + + + =

+ + + + + + =

"

" Nφ

T

E

N

D
D

 (6.43) 

where  and  are the east and north coordinate 

differences respectively between the terminal points of the traverse.  Note that in a traverse 

beginning and ending at the same point  and  will both be zero. 

E END STARD E E= − N END STARTD N N= −

ED ND

 

Expanding equation (6.43) gives 

 1 1 2 2

1 1 2 2

sin sin sin
cos cos cos

n n E

n n N

v v v S
v v v S

φ φ φ
φ φ φ
+ + + + =
+ + + + =

"
"

 (6.44) 

where  (6.45) 
1 1 2 2

1

1 1 2 2
1

sin sin sin

cos cos cos

n

E n
k

n

N n
k

S s s s E

S s s s N

φ φ φ

φ φ φ

=

=

= + + + = Δ

= + + + = Δ

∑

∑

"

"

n k

n k

k,E NS S  are the sums of the east and north components, ,kE NΔ Δ  respectively, of the 

 traverse legs. 1, 2, ,k = … n

E

N

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Equations (6.44) can be expressed in matrix form as 

  (6.46) 

1

2
1 2 3

3
1 2 3

sin sin sin sin
cos cos cos cos

n E

n N

n

v
v

D S
v

D S

v

φ φ φ φ
φ φ φ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥ −⎡ ⎤

=⎢ ⎥⎢ ⎥ −⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

#

or =Av f  
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The solution for the vector of residuals v is given by equations (6.24) and (6.26) re-stated 

again as 

  (6.47) 
( )

1

1

T T

T

−

−

= =

=

v W A k QA k

k AQA f

where k is the vector of Lagrange multipliers, 1−=Q W  is the cofactor matrix and W is the 

weight matrix, A is a coefficient matrix containing sines and cosines of traverse bearings and 

f is a vector containing the negative sums of the east and north components of the traverse 

legs. 

 

In Crandall's method, weights are considered as inversely proportional to the measured 

distances and the measured distances are considered to be independent.  Hence the weight 

matrix W is diagonal 

 

1 1

2 2

3 3

0 0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 1

0 0n n

w s
w s

w s

w s

0

1
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⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
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" "
" "
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and since  then 1−=Q W

 

1

2

3

0 0 0
0 0
0 0

0 n

s
s

s

s

0
⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
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Q

"
"

#
# %
"

 

and  (6.48) 

1 1 1

2 2 2

3 3 3 3

0 0 0 sin cos
0 0 0 sin cos
0 0 sin cos

0 sin cos

T

n n n n

s E
s E

s

s E

φ φ
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φ φ

Δ Δ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢Δ Δ⎢ ⎥ ⎢ ⎥ ⎢

= ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
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Now, since sin k
k

k

E
s

φ Δ
=  and cos k

k
k

N
s

φ Δ
=  then  can be written as TAQA

 

( )

( )

2

1 1

2

1 1

n n
k k k

k kk kT

n n
kk k

k kk k

E E N
s s a c

c bNE N
s s

= =

= =

⎡ ⎤Δ Δ Δ
⎢ ⎥

⎡ ⎤⎢= ⎥ = ⎢ ⎥⎢ ⎥ ⎣ ⎦ΔΔ Δ⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑
AQA  (6.49) 

and ( ) 1

2

1T b c
c aab c

− −⎡ ⎤
= ⎢ ⎥−− ⎣ ⎦

AQA  

giving the Lagrange multipliers from equations (6.47) as 

 

( ) ( )

( ) ( )
1 2

2 2

E E N N

N N E E

b D S c D S
k

ab c
a D S c D S

k
ab c

− − −
=

−
− − −

=
−

 (6.50) 

The residuals v (corrections to the measured distances) are given as 

  (6.51) 

1 1 1 1 2
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6.5.3. Example of Crandall's method 

 

Figure 6.5 shows a closed traverse between stations A, B, C, D and E.  The linear misclose 

(bearing and distance) of the traverse is 222º 57' 31" 0.2340 and the components of the 

misclose are  east and  north.  It is required to adjust the distances 

using Crandall's method. 

0.1594 m− 0.1712 m−
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229
° 3
5′ 

 
Figure 6.5  Closed traverse between stations ABCDE 

 

The adjusted bearings and measured distances and the traverse leg components are shown in 

Table 6.3 below.   and  are the summations of east and north components and since this 

traverse begins and ends at the same point then  and  will both be zero. 

ES NS

ED ND

 
Line Bearing Distance traverse leg components 

k kφ  ks  kEΔ  kNΔ  
1 42º 27′ 127.470 86.035437 94.055858 
2 96º 49′ 86.430 85.819028 -10.258619 
3 137º 16′ 162.370 110.182189 -119.264002 
4 229º 35′ 98.420 -74.932042 -63.809760 
5 295º 40′ 229.600 -206.945175 99.447747 

 
 

 
ES =0.159438 NS = 0.171224 

 
Table 6.3  Traverse components and sums 
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Table 6.4 shows the functions of the components for each line and their summations. 

 

Line ( )2
k

k

E
s

Δ
 ( )2

k

k

N
s

Δ
 k k

k

E N
s

Δ Δ  

1 58.069322 69.400678 63.482677 
2 85.212376 1.217624 -10.186101 
3 74.768213 87.601787 -80.931014 
4 57.049491 41.370509 48.581545 
5 186.525721 43.074279 -89.635154 

 a = 461.625124 b =242.664876 c = -68.688048 

 
Table 6.4  Functions of traverse components 

 

The Lagrange multipliers  and  are computed from equations 1k 2k (6.50) using a, b, c from 

Table 6.4,  and  from Table 6.3, and since this traverse begins and ends at the same 

point then  and  will both be zero. 

ES NS

ED ND
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−
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Table 6.5 shows the original traverse data, the residuals and adjusted traverse distances. 

 
Line Bearing Distance Traverse leg components Residual 

k kφ  ks  kEΔ  kNΔ  1 2k kv k E k Nk= Δ + Δ  
Adjusted 
Distance 

1 42º 27′ 127.470 86.035437 94.055858 -0.119 127.351 
2 96º 49′ 86.430 85.819028 -10.258619 -0.032 86.398 
3 137º 16′ 162.370 110.182189 -119.264002 0.048 162.418 
4 229º 35′ 98.420 -74.932042 -63.809760 0.089 98.509 
5 295º 40′ 229.600 -206.945175 99.447747 0.014 229.614 

 
Table 6.5  Adjusted traverse distances: Crandall's method 
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6.5.4. A rigorous single traverse adjustment method 

 

A traverse is a combination of two basic survey measurements, distances and directions.  

Ignoring the physical fact that the same measuring equipment is likely to be used on each leg 

of the traverse, distances and directions are independently determined quantities.  Bearings φ , 

angles α  and coordinates E,N are derived quantities and in general, cannot be considered as 

mathematically (or statistically) independent.  Restricting the adjustment method to single 

traverses, means angles at traverse points, derived from directions at those points, can be 

considered as mathematically independent quantities. 

 

Three conditions, expressing the mathematical relationship between traverse measurements 

and derived coordinates, may be deduced from Figure 6.6 below, in which  and  are 

"fixed stations" whose east and north coordinates are known and  are 

"floating stations" whose coordinates are to be determined from the traverse angles 

1P nP

2 3 4 1, , , , nP P P P −…

α  and 

distances s.  The starting bearing 0φ  and the finishing bearing nφ  are known. 
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Figure 6.6  A closed traverse between two fixed stations 
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These three conditions are: 

 

 (i) The starting bearing 0φ  plus all the measured angles should equal the known 

finishing bearing nφ , 

 (ii) The starting east coordinate plus all the east components of the traverse legs 

should equal the known east coordinate at the end point and 

 (iii) The starting north coordinate plus all the north components of the traverse legs 

should equal the known north coordinate at the end point. 

 

These conditions apply to all single traverses whether they start and end at different fixed 

points or close back on the starting point and can be expressed mathematically as 

 
0 1 2 3

1 1 2 3 1

1 1 2 3 1

n n

n

n n

a
E E E E E E
N N N N N N

n

φ α α α φ

−

−

+ + + + + =
+Δ +Δ +Δ + + Δ =
+Δ +Δ +Δ + + Δ =

"
"
"

 (6.52) 

Equations (6.52) are relationships between adjusted quantities 1 2, , , nα α α…  or functions of 

adjusted quantities 1 2 1, , , nE E E −Δ Δ Δ… 1 and 1 2, , , nN N N −Δ Δ Δ… . 

 

Traverses will generally misclose due to the small random errors in the angles (derived from 

the measured directions) and the measured distances.  To make the traverse mathematically 

correct, small corrections must be applied to the measurements to give adjusted quantities.  

These adjusted quantities are: 

 ss s v′= +  

 vαα α′= +  

where s and α  are adjusted distance and angle respectively, and s α′ ′  are the measured angle 

and distance, and  and sv vα  are small corrections.  Replacing the adjusted quantities with 

measurements and corrections allows the first member of equations (6.52) to be expressed as 

 ( ) ( ) ( ) ( )1 2 30 1 2 3 nn nv v v vα α α αφ α α α α+ + + + + + + + + =" φ  

and summing the measured angles and rearranging gives a simple expression for the 

summation of corrections to measured angles as 
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1 2 3 1n

v v v vα α α α f+ + + + ="  (6.53) 

where, apart from some multiple of 180º 

 1 0
1

n

n k
k

f n nφ φ α φ
=

⎛ ⎞ φ′ ′= − + = −⎜ ⎟
⎝ ⎠

∑  (6.54) 

1f  is the angular misclose in the traverse and equation (6.54) simply states that the sum of the 

corrections to the measured angles is equal to the angular misclose. 

 

The second and third members of equations (6.52) can also be expressed as a summation of 

corrections by considering the following 

 sin   and  cosE s N sφ φΔ = Δ =  

where  are east and north components of a traverse leg and ,E NΔ Δ

   and  ss s v vφφ φ′ ′= + = +  

where  and vφφ′  are "measured" bearing and correction respectively, hence we express the 

east and north components as 

 
( ) ( )
( ) ( )

sin

cos

s

s

E s v v

N s v v

φ

φ

φ

φ

′ ′Δ = + +

′ ′Δ = + +
 

Using the trigonometric expansions for ( )sin A B+  and ( )cos A B+ , and the approximations 

sin v vφ φ�  and c  since os 1vφ � vφ  is a small quantity gives 

 
( ){ }
( ){ }

sin cos sin cos sin cos sin cos

cos cos sin sin cos sin cos sin

s s s

s s s

E s v v v s s v v v v

N s v v v s s v v v v

φ φ φ φ

φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ

′ ′ ′ ′ ′ ′ ′ ′Δ = + + = + + +

′ ′ ′ ′ ′ ′ ′ ′Δ = + − = − + − φ

′

′
 

and since sv  and vφ  are both small then their product , hence 0sv vφ �

 
sin cos sin

cos sin cos
s

s

E s v s v

N s v s v
φ

φ

φ φ φ

φ φ φ

′ ′ ′ ′Δ = + + ′

′ ′ ′Δ = − + ′
 

Finally, the east and north components of a traverse leg computed using the measured 

quantities are sinE s φ′ ′Δ = ′  and cosN s φ′ ′Δ = ′ , and we may write 
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sin

cos
s

s

E E v N v

N N v E v
φ

φ

φ

φ

′ ′ ′Δ = Δ + Δ +

′ ′Δ = Δ − Δ + ′

n

n

n

n n

 (6.55) 

Substituting equations (6.55) into the second and third members of equations (6.52) gives 

  

( )
( )

( )
( )
( )

( )

1 1

2 2

1 1

1 1

2 2

1 1

1 1 1 1

2 2 2

1 1 1

1 1 1 1

2 2 2

1 1 1

sin

sin

sin

cos

cos

cos

n n

n n

s

s

n n s n

s

s

n n s n

E E v N v

E v N v

E v N v E

N N v E v

N v E v

N v E v N

φ

φ

φ

φ

φ

φ

φ

φ

φ

φ

φ

φ

− −

− −

− − −

− − −

′ ′ ′+ Δ + Δ +

′ ′ ′+ Δ + Δ +

+

′ ′ ′+ Δ + Δ + =

′ ′ ′+ Δ − Δ +

′ ′ ′+ Δ − Δ +

+

′ ′ ′+ Δ − Δ + =

"

"

Letting the misclose in the east and north coordinates be 

 

1

2 1
1

1

3 1
1

n

n k n
k

n

n k
k

f E E E E E

f N N N N N

−

=

−

=

⎧ ⎫′ ′= − + Δ = −⎨ ⎬
⎩ ⎭
⎧ ⎫′ ′= − + Δ = −⎨ ⎬
⎩ ⎭

∑

∑
 (6.56) 

and recognising that 
1 1 2 1 2 3 1 2

, ,v v v v v v v v v
3φ α φ α α φ α α α= = + = + +  etc, and 

1

1

1
n

n

k

v
k

vφ α−

−

=

= ∑  then we 

may write 

 

( ) ( )1 1 1 2 2 1 2 3 3

1

1 1 2 2 3 3

1

1 1 2
1

sin sin sin

sin
k n

s s

n

n s n
k

v N v v v N v v v v N v

v N v f

α α α α α α

α

φ φ

φ
−

−

− −
−

′ ′ ′ ′ ′ ′Δ + + + Δ + + + + Δ + +

⎛ ⎞ ′ ′+ Δ + =⎜ ⎟
⎝ ⎠
∑

"

"

s φ

 

 
( ) ( )1 1 1 2 2 1 2 3 3

1

1 1 2 2 3 3

1

1 1 3
1

cos cos cos

cos
k n

s s

n

n s n
k

v E v v v E v v v v E v

v E v f

α α α α α α

α

φ φ

φ
−

−

− −
−

′ ′ ′ ′ ′ ′− Δ + − + Δ + − + + Δ + −

⎛ ⎞ ′ ′− Δ + =⎜ ⎟
⎝ ⎠
∑

"

"

s φ

c

 

Gathering together the coefficients of  and rearranging gives 
1 2 3
, , ,  etv v vα α α

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 1

1 2 3

1 2 3 1

1 2 3 1

sin sin sin sin
n

n

s s s n s

n n n n n

v v v v

N N v N N v N N v N N v fα α α α

φ φ φ φ
−

−

−

−

′ ′ ′ ′+ + + +

′ ′ ′ ′ ′ ′ ′+ − + − + − + + − =

"

"
1 2  (6.57) 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 1

1 2 3

1 2 3 1

1 2 3 1

cos cos cos cos
n

n

s s s n s

n n n n n

v v v v

E E v E E v E E v E E v fα α α α

φ φ φ φ
−

−

−

−

′ ′ ′ ′+ + + +

′ ′ ′ ′ ′ ′ ′− − − − − − − − − =

"

"
1 3  (6.58) 

Equations (6.53), (6.57) and (6.58) are the three equations that relate corrections to angles and 

distances, vα  and sv  respectively to angular and coordinate misclosures 1 2 3,  and f f f  given by 

equations (6.54) and (6.56).  In equation (6.53) the coefficients of corrections to angles are all 

unity, whilst in equations (6.57) and (6.58) the coefficients of the corrections are sines and 

cosines of bearings and coordinate differences derived from the measurements.  Equations 

(6.53), (6.57) and (6.58) are applicable to any single closed traverse. 

 

6.5.5. Application of Least Squares Adjustment of Observations Only to Particular Single 
Closed Traverses 

 

There are three types of single closed traverses. 
 

Type I Traverses that begin and end at different fixed points with fixed 

orienting bearings at the terminal points.  Figure 6.7(a). 
 

Type II Traverses that begin and end at the same point with a single 

fixed orienting bearing.  Figure 6.7(b) 
 

Type III Traverses that begin and end at the same point with a fixed 

datum bearing.  Figure 6.7(b) 
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Figure 6.7(a)  Type I traverse 
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Figure 6.7(b)  Type II traverse Figure 6.7(c)  Type III traverse 

 

Figures 6.7(a), 6.7(b) and 6.7(c) show three types of closed traverses.  In each case, the 

traverse consists of four(4) distances  to  and five(5) angles 1s 4s 1α  to 5α .  Traverse points 

shown with a triangle ( )Δ  can be regarded as fixed with known coordinates. 

 

In Figures 6.7(a) and 6.7(b) the bearing of the traverse line  is found by adding the 

observed angle 

1P P→ 2

1α  to the fixed bearing 0φ .  In both of these traverses five angles must be 

observed to "close" the traverse. 

 

In Figure 6.7(c) the bearing of the traverse line  is fixed and only four angles need be 

observed to close the traverse.  The angle 

1P → 2P

1α  at , clockwise from north to , is the bearing 

of the traverse line .  

1P 2P

1 2P P→ 1α  is used in the adjustment as an observation with a standard 

deviation of zero. 
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For any single closed traverse, the method of adjustment is as follows: 

 

(i) Calculate the coordinates of the traverse points by using the observed bearings and 

distances beginning at point . 1P

(ii) Calculate the angular and coordinate misclosures.  In each case, the misclose is the 

fixed value minus the observed or calculated value.  These three values are the 

elements 1 2,f f  and 3f  in the vector of numeric terms f 

(iii) Calculate the coefficients of the correction (or residuals) in equations (6.53), (6.57) and 

(6.58).  These coefficients are either zero or unity for equation (6.53), or sines and 

cosines of observed bearings together with coordinate differences in equations (6.57) 

and (6.58).  These values are the elements of the coefficient matrix A 

(iv) Assign precisions (estimated standard deviations squared) of the observations.  These 

will be the diagonal elements of the cofactor matrix Q 

 Note: In Type III traverses where the bearing  is fixed, the angle 1P P→ 2 1α  (which is 

not observed) is assigned a variance (standard deviation squared) of zero. 

(v) Form a set of three(3) normal equations ( )T =AQA k f  

(vi) Solve the normal equations for the three(3) Lagrange multipliers  and  which 

are the elements of the vector k from 

1 2,k k 3k

( ) 1T −
=k AQA f  and then compute the vector of 

residuals (corrections) from  T=v QA k

(vii) Calculate the adjusted bearings and distances of the traverse by adding the corrections 

to the observed angles and distances. 
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6.5.6. Example of Traverse Adjustment using Least Squares Adjustment of Observations 
Only 

 

Figure 6.8 is a schematic diagram of a traverse run between two fixed stations A and B and 

oriented at both ends by angular observations to a third fixed station C. 

 

The bearings of traverse lines shown on the diagram, unless otherwise indicated, are called 

"observed" bearings and have been derived from the measured angles (which have been 

derived from observed theodolite directions) and the fixed bearing AC.  The difference 

between the observed and fixed bearings of the line BC represents the angular misclose.  The 

coordinates of the traverse points D, E and F have been calculated using the observed 

bearings and distances and the fixed coordinates of A.  The difference between the observed 

and fixed coordinates at B represents the coordinate misclosures. 

 

In this example estimated standard deviations of measured angles α  are  and for 

measured distances s are  where ppm is parts per million. 

5sα ′′=

10mm + 15ppmss =
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Figure 6.8  Traverse diagram showing field measurements, derived values and fixed values. 
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Step 1:  Calculation of misclosures and formation of vector f

 

From equations (6.54) and (6.56) the angular and coordinate misclosures are the elements 

1 2 3,  and f f f  of the vector of numeric terms f.  These misclosures may be characterised as 

misclose = fixed - observed 

angular misclose: 1

236 37 46 236 38 01
15

n nf φ φ′= −

′ ′′ ′ ′′= −
′′= −

D D

 

east misclose: 2

6843.085 6843.030
0.055 m
5.5 cm

n nf E E′= −
= −
=
=

 

north misclose: 3

7154.700 7154.779
0.079 m
7.9 cm

n nf N N ′= −
= −
= −
= −

 

vector of numeric terms:  
15 sec

5.50 cm
7.9 cm

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
−⎢ ⎥⎣ ⎦

f

Note that the units of the numeric terms are seconds of arc (sec) and centimetres (cm) 

 

 

Step 2:  Form the coefficient matrix A of the equations (6.16) Av = f

 

The first row of A contains coefficients of zero or unity from equation (6.53) 

 
1 2 3 1n

v v v v fα α α α+ + + + ="  

The second row of A contains the coefficients sin kφ′  and ( ) 100
n kN N

ρ
⎛′ ′− ⎜

⎞
⎟′′⎝ ⎠

from equation 

(6.57). 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 1

1 2 3

1 2 3 1

1 2 3 1

sin sin sin sin
n

n

s s s n s

n n n n n

v v v v

N N v N N v N N v N N v fα α α α

φ φ φ φ
−

−

−

−

′ ′ ′ ′+ + + +

′ ′ ′ ′ ′ ′ ′+ − + − + − + + − =

"

"
1 2  
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Note that the coefficients of the distance residuals are dimensionless quantities and the 

coefficients of the angle residuals have the dimensions of sec/cm where 180 3600ρ
π

′′ = ×  is 

the number of seconds in one radian. 

 

The third row of A contains the coefficients cos kφ′  and ( ) 100
n kE E

ρ
⎛′ ′− − ⎜

⎞
⎟′′⎝ ⎠

from equation 

(6.58). 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 1

1 2 3

1 2 3 1

1 2 3 1

cos cos cos cos
n

n

s s s n s

n n n n n

v v v v

E E v E E v E E v E E v fα α α α

φ φ φ φ
−

−

−

−

′ ′ ′ ′+ + + +

′ ′ ′ ′ ′ ′ ′− − − − − − − − − =

"

"
1 3  

Note that the coefficients of the distance residuals are dimensionless quantities and the 

coefficients of the angle residuals have the dimensions of sec/cm where 180 3600ρ
π

′′ = ×  is 

the number of seconds in one radian.  The equation =Av f  is 

 

angles

0 0 0 0 1 1 1 1 1 1

0.9382 0.9309 0.2914 0.9147 0.7860 0.3829 0.5658 0.3065 0 5.50

0.3462 0.3653 0.9566 0.4040 2.3311 1.2388 0.7729 0.6939 0 7.90

distances

v

v

v

v

v

v

v

v

v

↑

−↓

− − − − =↑

− − − − − − −

↓

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

5

−

⎡
⎢

⎣

4.6 cm 2.5 cm 1.8 cm 3.3 cm       5       5          5         5    5′′ ′′ ′′ ′′ ′′

⎤
⎥

⎢ ⎥
⎢ ⎥⎦

 

Note that the numbers below the columns of A are the estimates of the standard deviations of 

the distances or angles associated with the coefficients. 

 

 

Step 3:  Form the normal equations

 

The normal equations are given by equations (6.25) as ( )T =AQA k f  

where  is the cofactor matrix containing estimates of the variances of the 

measurements.  Q and the weight matrix are W are square diagonal matrices, i.e., all off-

diagonal elements are zero and since weights are inversely proportional to the estimates of the 

1−=Q W
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variances, the diagonal elements of 2 2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4 5

1 1 1 1 1 1 1 1 1

s s s s ss s s s s s s s sα α α α

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

Q  

where the first 4 elements relate to the angles and the remaining 5 elements relate to the 

distances.  Now consider a diagonal matrix that denoted Q  whose diagonal elements are the 

square-roots of the elements of Q and =Q Q Q  and another matrix =A A Q .  Each 

element of A  is the original element of A multiplied by the estimate of the standard deviation 

associated with the particular element and the normal equations are given by ( )T =AA k f  

where 

 
0 0 0 0 5 5 5 5

4.3155 2.3272 0.5245 3.0186 1.9145 1.9145 2.8288 1.5324 0
1.5926 0.9134 1.7219 1.3333 6.1939 6.1939 3.8644 3.4696 0

⎡ ⎤
⎢ ⎥= − − − −⎢ ⎥
− − − − − − −⎢ ⎥⎣ ⎦

A
5

 

and 
125 51.0285 125.9168

51.0285 62.8875 64.2375
125.9168 64.2375 209.2995

T

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
−⎢ ⎥⎣ ⎦

AA  

 

 

Step 4:  Solve the normal equations for the vector of Lagrange multipliers k

 

From equations (6.47) and with the modification mentioned above 

 ( ) ( )1 1
0.0219 0.0063 0.0112 15

0.0250 0.0039 5.5
symmetric 0.0127 7.9

T T− −
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= = = −⎢ ⎥ ⎢ ⎥
−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

k AQA f AA f  

and 
0.3825
0.0738
0.2906

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
−⎢ ⎥⎣ ⎦

k  
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Step 5:  Calculation of residuals and adjusted traverse dimensions

 

The residuals are obtained from equation (6.24)  T=v QA k

 

Since the cofactor matrix Q is diagonal, the individual residuals can be calculated from 

 ( )2
1 1 2 2 3 3j j j j jv s a k a k a k= + +  (6.59) 

where 

  are elements of the coefficient matrix A 1 2 3, ,j ja a a j

  are the elements of the vector k 1 2 3, ,k k k

  is the estimate of the variance of the j2
js th measurement 

For example, the residual for the second distance ( )2j =  is 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }22.5 0 0.3825 0.9309 0.0738 0.3653 0.2906 0.23 cm− + + − = −  

and the residual for the third measured angle ( )7j =  is 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }25 1 0.3825 0.5658 0.0738 0.7729 0.2906 4.99′′− + − + − − = −  

Exactly the same result can be obtained by using the estimate of the standard deviations  

and the elements of the matrix 

js

A  

 ( )1 1 2 2 3 3j j j j jv s a k a k a k= + +  (6.60) 

Both methods give 

 

3.59 cm
0.23
0.97 distances
2.01 cm
5.92
1.27
4.99 angles
5.09
9.56

↑⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥ ↓⎢ ⎥
⎢ ⎥′′= ↑
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥
⎢ ⎥′′− ↓⎣ ⎦

v  

© 2005, R.E. Deakin Notes on Least Squares (2005) 6–38 



RMIT University Geospatial Science 

 

The residuals for the bearings are the cumulative residuals for the angles up to the particular 

traverse line.  They are 

 

5.92
4.65
0.34
5.43

14.99

φ

′′⎡ ⎤
⎢ ⎥
⎢ ⎥

= −⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥′′−⎣ ⎦

v  

Applying these residuals (or corrections) to the measured quantities gives the adjusted 

traverse dimensions as 

 
Line Bearing Distance 

k kφ  ks  

1 110º 27′ 25.9′′ 2401.645 
2 68º 34′ 22.6′′ 1032.338 
3 163º 03′ 31.7′′ 559.032 
4 113º 49′ 44.6′′ 1564.703 

 
Table 6.6  Adjusted traverse distances 
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Figure 6.9  Traverse diagram showing adjusted measurements. 
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